
Introduction to Gerbes

Yiannis Loizides, Spring 2015

These notes introduce gerbes, which are “realizations” of degree 3 integral
cohomology, analogous to the way line bundles “realize” degree 2 integral
cohomology. We begin with the very concrete Hitchin-Chatterjee description
in terms of transition line bundles, following Hitchin’s notes (“Lectures on
special Lagrangian submanifolds”). We then move on to Murray’s bundle
gerbes (following his notes “An introduction to bundle gerbes”). Although
slightly more abstract, these lead to elegant constructions of some important
examples. They are also a useful stepping stone to the still more abstract
picture (Giraud, Brylinski) in terms of sheaves of groupoids, which we touch
on only very briefly.

1 Transition line bundles

We will describe the Hitchin-Chatterjee picture in terms of hermitian line
bundles (so all of our line bundles are equipped with a hermitian structure).
As usual, this is equivalent to using U(1) principal bundles. We could in-
stead work with line bundles and principal C× principal bundles. It makes
no difference (the structure group can always be reduced to U(1)), but as a
differential geometer I like U(1)-bundles, so that is what I will use. For a line
bundle L, I will write Q = U(L) for the corresponding principal U(1)-bundle.
By unitary section of L|U , I will mean a section s such that ||s|| = 1.

We begin by briefly reviewing the situation with line bundles. Let Ua be
an open cover, and suppose we have U(1)-valued functions gab on double
overlaps, gab = g−1ba . We require that these satisfy the cocycle relation on
triple overlaps:

δg = gabgbcgca = 1.

Then, we get a line bundle L in the usual way, with the gab acting as tran-
sition functions. The cocycle condition says that gab is a Cech 1-cocycle for
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the sheaf of U(1)-valued functions. Suppose g is a Cech coboundary, that
is, gab = hah

−1
b ⇒ ha = gabhb. This says that the collection {ha} defines a

global section of U(L), so L is trivial. More generally representatives for the
same Cech 1-cocycle give isomorphic line bundles. We’ve shown that line
bundles are classified by H1(M,C∞(U(1))). By the exponential sequence,
this is isomorphic to H2(M,Z). The class of the line bundle in H2 is denoted
c1(L); it is the first Chern class.

For gerbes, we want to try to do something analogous withH2(M,C∞(U(1))).
Again the exponential sequence tells us that this is equivalent to H3(M,Z)
(as advertised). So the starting point is an open cover Ua and a Cech 2-
cocycle gabc : Uabc → U(1). So on Uabcd, g satisfies

(δg)abcd = gbcdg
−1
acdgabdg

−1
abc = 1.

We want in the end to have a definition independent of choices (cover and
representative). This will come later; for now I’ll follow Hitchin, who says
“this is a working definition, and we are going to make gerbes work for us”.

Definition 1.1. A gerbe is specified by an open cover Ua, and a Cech 2-
cocycle with values in the sheaf of U(1)-valued smooth functions.

We will say that a gerbe is trivial if g is a coboundary. A trivialization of
a gerbe is just a choice of cochain f = fab such that g = δf . Now suppose
f, f ′ are trivializations. Consider h = f ′/f . Then

δh = δf ′/δf = g/g = 1.

(Remember we are using multiplicative notation, so moving the δ inside the
fraction is like linearity when we use additive notation!) This says that h is
a 1-cocycle, hence it defines a line bundle! So we have shown that:

• Given a trivial gerbe, any two trivializations differ by a line bundle.

This is analogous to the fact that given a trivial line bundle, any two unitary
global sections differ by a function f : M → U(1).

We obtain an example of a trivial gerbe by restricting the cocycle g to one
of the open sets, say U0. To see this, note that

1 = (δg)0bcd = gbcdg
−1
0cdg0bdg

−1
0bc ⇒ gbcd = fcdfdbfbc,
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where
fab := g0ab.

(This makes sense as a cochain ONLY on U0, since g0ab is only defined on
U0ab.) So g|U0 = δf , so we’ve found a trivialization of g over U0.

On double overlaps, Uab we would get two potentially different trivializations
of g|Uab

, coming from each of Ua and Ub as above. As we showed before, these
differ by a line bundle Lab. We introduce some notation, which has the goal
of replacing Cech cocycles with line bundles. For a collection of line bundles
La1...an defined on n-fold intersections, we define

(δL)a1...an+1 = La2...an+1L
−1
a1a3...

...L±1a1...an ,

exactly analogous to Cech cocycles. Notice that δδL is canonically trivial;
for example, for Lab we have

(δL)abc = LabLbcLca,

and so δδL is a product of 12 line bundles, which cancel in pairs (all (3 choose
2) times 2 possible ordered pairs of indices from the set abc appear). So
δδLabcd ' C×Uabcd has a canonical trivializing section denoted 1. Similarly,
if s = sa1a2... is a collection of unitary sections of La1a2 (alternating under
permutations of indices), then we can define δs as a collection of sections of
δL by putting (we do the case sabc for simplicity):

δsabc = sbcs
−1
ac sab ∈ Γ(δLabc)

(tensor product section of a tensor product of line bundles). This is again
analogous to Cech cocycles. We apply the same notation to the correspond-
ing principal U(1) bundles.

This leads to the second definition of gerbe:

Definition 1.2. A gerbe is specified by an open cover Ua, together with tran-
sition line bundles Lab = L−1ba on double overlaps such that the line bundle
δLabc over Uabc is trivial. We must also have a choice of unitary trivialization
θabc of δLabc, such that δθ = 1 over quadruple overlaps.
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It is equivalent to work with the corresponding unitary frame bundles Qab =
U(Lab). Then, an equivalent way of specifying the trivializing section is to
have a choice of bundle isomorphism:

Qab ⊗Qbc → Qac;

the condition δθ = 1 then translates into the assumption that these bundle
isomorphisms satisfy “associativity”. We could also simply say that we have
a unitary isomorphism Lab ⊗ Lbc → Lac, which we then just restrict to the
unit circle bundles.

Here the trivialization θ is needed to get back the Cech cocycle, and is es-
sential to the definition. Indeed, if we were to take a good cover, then all
the transition line bundles will be trivial, and all the non-trivial topological
data of the gerbe is contained in the choices of the θ’s. In general, the non-
trivial topological data is carried by a mixture of the θ’s and the transition
line bundles themselves. (An example is the Hopf bundle, where the trivi-
alizations carry no information (triple intersections are empty), and all the
non-trivial topological information is contained in the transition line bundle.)

Given a gerbe as defined above, here is how we can recover a Cech 2-cocycle
as in the first definition. Take a good cover, then all the Lab are trivial.
Choose trivializing unitary sections τab = τ−1ba . Then

θabc = gabcτabτbcτca

for some function gabc : Uabc → U(1), and δθ = 1 implies that this is a Cech
2-cocycle.

Another remark about the terminology: we call these line bundles “transi-
tion line bundles”, but what do they transition between? This depends on
the context they are being used in. But one important point that initially
confused me is that you shouldn’t think of them as transitioning between
different line bundles—indeed if we have a good cover and Lab = LaL

−1
b then

δLabc is canonically trivial, and suppose θ is this canonical section (this is
what we would mean by saying that Lab transition between line bundles La).
Then choosing τa unitary trivializing sections of La, τab := τaτ

−1
b , we get that

δτ = 1⇒ gabc = 1 by the above calculation. So the Cech 2-cocycle is trivial.
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Example 1: the lifting gerbe. Let P →M be a principal G-bundle, and
suppose G̃ is a central extension of G:

1→ U(1)→ G̃→ G→ 1.

(An important example is the group Spinc(n), which is a central extension
of SO(n).) Suppose we want to find a principal G̃ bundle P̃ → M which
“covers” P . In general this might not be possible, and the obstruction is
encoded in a gerbe which we now describe.

Choose a trivializing cover Ua for the bundle P , and let gab : Uab → G
be the transition functions. What we seek are lifts of these to functions
g̃ab : Uab → G̃ such that

g̃abg̃bcg̃ca = 1.

Suppose we have two such lifts g̃ab, g̃
′
ab, defining two lifts P̃ , P̃ ′. Since g̃, g̃′

both map to the same element in G, the above exact sequence implies that
their quotient is in U(1), and thus we get U(1)-valued functions fab := g̃′ab/g̃ab.
These functions satisfy the cocycle relation, and so define a line bundle L (or
equivalently a principal U(1)-bundle Q = U(L)). Also by construction,

g̃′ab = g̃abfab,

which just says that P̃ ′ = P̃ ⊗ Q. 1 That is, any two choices of lifts (when
they exist) differ by a principal U(1)-bundle.

Now, since P is trivial over each Ua, we can find a lift P̃a over Ua. However
the restrictions of P̃a and P̃b to the double intersection Uab need not agree: by
the computation above they will differ by a principal U(1) bundle in general,
say Qab = U(Lab) where Lab is a hermitian line bundle over Uab, and we have
isomorphisms

P̃a ⊗Qab = P̃b.

(By writing “=” we really mean that we have chosen an isomorphism.) On
triple intersections we have

P̃aQabQbcQca = P̃bQbcQca = P̃cQca = P̃a,

1The tensor product here means take the principle G̃ bundle whose transition functions
are the product of the transition functions for the two bundles. This works since U(1) ⊂ G̃
is in the centre of G̃. More abstractly, we take the fibre product of P̃ and Q, and then
quotient by the appropriate action of U(1).
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which shows that δLabc is trivial: let θabc be the unique section of δQ such
that g̃ 7→ g̃ ⊗ θabc is inverse to the isomorphism above.

Everything seems to depend strongly on all the choices—we’ll get a much
more elegant description of this gerbe when we pass to bundle gerbes. The
above was a good example of why the Lab can be thought of transition line
bundles: here transitioning between different lifts to a central extension.

Example 2: the “Hopf gerbe”/magnetic monopole. The first exam-
ple of a non-trivial line bundle is the Hopf bundle on S2: we get this by a
“clutching construction”, using for transition function along the equator a
map S1 → U(1) with winding number 1. Its chern class is the generator
for H2(S2). We can do a similar construction for S3, but now instead of
a transition function we have a transition line bundle. The equator is now
S2, and we can use the Hopf line bundle as our transition line bundle. We
get a gerbe, representing the generator of H3(S3). (Don’t need to specify a
trivializing section here, as triple intersections are empty. Indeed this is an
example of the opposite extreme, where all the nontrivial topological data is
contained in the transition line bundles.)

Actually we can be more general: let M be any 3-manifold. Given a point
p ∈ M and a ball B around p, ∂B ' S2 and we can do the same thing.
This is analogous to the construction of the holomorphic line bundle Lp on
a Riemann surface.

2 Connections and curvature

Definition 2.1. A connection (or connective structure) on a gerbe (Lab, θabc)
consists of a hermitian connection ∇ab on Lab and collection of 2-forms Fa
on Ua such that

1. ∇abcθabc = 0 (here ∇abc is the induced connection on δLabc)

2. Fb − Fa =: Fab (on double overlaps) is the curvature of ∇abc.

The forms Fa are sometimes called the curving of the connection, or some-
times the B-field (think: the B-fields we encountered last semester, for
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Courant algebroids!) On double overlaps we have d(Fb − Fa) = dFab = 0,
which shows that

G|Ua := dFa,

defines a global 3-form called the 3-curvature.

Take a good cover, and let τab denote choices of unitary trivializing sections
for Lab. Recall that the Cech 2-cocycle g of the gerbe is given by

θabc = gabc(δτ)abc.

Let Aab be connection 1-forms relative to the chosen trivializations, that is

∇abτab = −iAabτab.
Then Aab +Abc +Aca is the connection 1-form on δLabc relative to the trivi-
alizing section δτabc. Thus

0 = ∇abcθabc = (dgabc)τabc − igabc(Aab + Abc + Aca)τabc,

which gives
iAab + iAbc + iAca = g−1abcdgabc.

Proposition 2.2. The cohomology class of the 3-curvature is the image in
H3(M,R) of the class representing the gerbe in H3(M,Z) ' H2(M,C∞(U(1))).

Proof. (Sketch) We need to recall how to get a Cech cocycle beginning with
a de Rham cocycle. Suppose G is a closed 3-form. Let Ua be a good cover.
Then by Poincare G|Ua = dFa for some 2-forms Fa. On double overlaps
d(Fb − Fa) = G − G = 0, so we can find 1-forms Aab defined on double
overlaps such that Fb − Fa = dAab. Then δAabc = Aab + Abc + Aca is a sum
of six terms which cancel in pairs. So we can find functions fabc : Uabc → R
such that Aab + Abc + Aca = dfabc.

On quadruple overlaps, let kabcd = (δf)abcd = fbcd − facd + fabd − fabc. Then
d(δf)abcd = 0, and so the kabcd are constants. This is the desired Cech 3-
cocycle (for the constant sheaf R). If G was the image of an integral class,
then we can make all choices such that these constants are integers. Then
define

gabc = exp(2πifabc);

this is the desired (multiplicative) Cech 2-cocycle—the fact that the constants
are integers ensures that δg = 1 even though δf 6= 0 in general. (This formula
for g is exp ◦δ−1(k), which is the inverse of the boundary map δ ◦ log in the
exponential long exact sequence.)
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3 Holonomy

Definition 3.1. A connection on a gerbe is flat if its 3-curvature vanishes.

Note that this does not imply that the gerbe is trivial, but only that the Cech
3-cocycle is torsion. When a line bundle is flat, it can still be non-trivial;
and this can be captured through the holonomy of the connection. Similarly
we will next define the holonomy of a flat gerbe.

Suppose (Lab, θ,∇ab, Fa) is a flat gerbe. Choose a good cover, so

Fa = dBa ⇒ Fb − Fa = dAab = d(Bb −Ba)

so there exist functions fab on double overlaps such that

Aab −Bb +Ba = dfab.

We get therefore
id(fab + fbc + fca) = g−1abcdgabc.

Since Uabc is contractible, we can define log gabc by choosing a value at a point
p ∈ Uabc (i.e. a choice of branch) and then everything else is determined by
analytic continuation. Thus choosing a branch we can re-write this as

d(ifab + ifbc + ifca − log gabc) = 0.

So we get a constants cabc ∈ R (divided by i here). If we choose a different
branch of log, then log g changes by 2πi times an integer, so the constants
cabc change by 2πZ. Thus although cabc depends on the choice of branch of
log, the equivalence classes [cabc/2π] ∈ R/Z do not.

Definition 3.2. The class of the Cech 2-cocycle cabc/2π in H2(M,R/Z) is
called the holonomy of the connection. (N.B. here R/Z is the constant sheaf!)

Hitchin points out an elegant interpretation of this. Recall that a flat line
bundle with connection has holonomy around a curve. A gerbe has holon-
omy around a surface. This is because for a closed connected orientable
surface S ⊂M we have H2(S,R/Z) ' R/Z (constant sheaf, NOT S1-valued
functions). On the other hand, the pullback of G to S is zero, since S is
2-dimensional. So we get a holonomy cabc/2π ∈ R/Z, an angle of holonomy
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around the surface!

For line bundles, if we have a flat connection AND the holonomy is trivial,
then the line bundle is trivial (and we get a trivializing section by parallel
transport). A similar result holds for gerbes. Suppose cabc is a coboundary,
so c = δk, where kab are constants in 2πR/Z. Define

hab = exp(ifab − ikab),

(well-defined since exp handles the quotient by Z). Then the equations above
imply

habhbchca = gabc,⇒ g = δh,

so g is a coboundary and the gerbe is trivial.

But more than that, we have a particularly nice trivialization given by h
(it is the analog of a covariantly constant trivialization obtained by parallel
transport in the line bundle case)—Hitchin calls the h that arrises in this way
a flat trivialization. Now suppose we have two different flat trivializations
h, h′. As before t = h′/h defines a line bundle L. But it is not just any line
bundle! Using the equations above, we have

iBb − iBa − iAab = idfab = d log hab

iB′b − iB′a − iAab = idf ′ab = d log h′ab

and subtracting these shows that if we define Ca = B′a −Ba then

iCb − iCa = g−1ab dgab ⇒ iCb = iCa + g−1ab dgab

which says the Ca are a collection of connection 1-forms on L. Moreover

dCa = dB′a − dBa = Fa − Fa = 0,

so this connection is flat. In other words, the difference of two flat trivial-
izations of a gerbe is a flat line bundle: this is strictly stronger than before
(when we found that the difference between two ordinary trivializations is a
line bundle), since e.g. the chern class of this line bundle in this case will
be torsion. This shows the sense in which flat trivializations are particularly
nice examples of trivializations.
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4 Loop space picture

Suppose we pullback the gerbe G to a loop ` : S1 →M (f ∈ LM). Since the
loop is only 1-dimensional, the pullback gerbe `∗G is flat with trivial holon-
omy (Cech 2-cocycle cabc will also become trivial!). This means that there
will be flat trivializations of G|`. Moreover, we showed above that the space
of flat trivializations is acted on transitively by the space of flat line bundles.
A flat line bundle on S1 is uniquely determined, up to gauge equivalence, by
its holonomy, which is an element of U(1).

Identify two flat trivializations if they differ by a flat line bundle with trivial
holonomy (a flat line bundle on S1 may still have a non-trivial connection;
however in this case the only gauge invariant is the holonomy of the con-
nection): let Q` denote the resulting “moduli space of flat trivializations” of
G|`. Summarizing, given a loop `, we have a moduli space Q` of flat trivial-
izations, which carries a free and transitive action of U(1) (the latter being
viewed as the space of flat line bundles on `). These glue together to give
a principle U(1) bundle Q → LM . So we’ve replaced the gerbe with a line
bundle, by passing to the loop space!

And we get more structure. A path in the loop space F : [0, 1] × S1 → M
gives a cylinder in M . Since this is a 2-dimensional surface, the pullback of
G under F is flat. Moreover, as [0, 1] × S1 deformation retracts to S1, the
pullback gerbe also has trivial holonomy (for this latter fact, it is important
to view this as a pullback to [0, 1] × S1, since e.g. the image of F could
well be a closed surface, e.g. S2). So we can choose a flat trivialization for
F ∗G. Restricting this flat trivialization to the two endpoints, we obtain flat
trivializations on {0} × S1 and {1} × S1; this defines a mapping from the
moduli space of flat trivializations over `0 to that over `1. In other words,
we get a method of doing parallel transport in the bundle Q over loop space.
The curvature of the resulting connection on Q is the transgression of the
3-curvature on M .

5 Bundle gerbes

There is a nice explanation of taking duals/products of U(1) bundles on page
4 of Murray’s notes.
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Now is a good time to summarize some of the basic functorial properties
and structures associated with gerbes. These are all highly analogous to line
bundles.

1. We can take duals and products of gerbes. These operations make
sense for Cech cocycles, and they also make sense in the transition line
bundle picture.

2. Gerbes can be pulled back by smooth maps.

3. Associated to a gerbe G is a characteristic class c(G), which pulls back
like the gerbe, and satisfies

c(G1 ⊗ G2) = c(G1) + c(G2), c(G∗) = −c(G).

4. There is a notion of connection (or “connective structure”) on a gerbe.
It has a curvature, which is a globally defined 3-form. This 3-form
is a representative in de Rham cohomology for the image of c(G) in
cohomology with real coefficients.

5. A connection on a gerbe has holonomy around any 2-dimensional closed
submanifold S.

The description of gerbes in terms of Cech cocycles for a good cover was
highly local. We moved somewhat away from this in the Hitchin-Chatterjee
picture, which allowed some of the non-trivial data of the gerbe to be pack-
aged in not necessarily local things: the transition line bundles, which could
be non-trivial bundles over non-contractible sets. The bundle gerbe picture
moves further in this direction.

5.1 Surjective submersions

We will want to consider surjective submersions π : Y → M . There are
two main examples: fibre bundles and open covers. Given an open cover
U = {Ua}, write YU for the disjoint union. Write Y (p) (or simply Y p for
brevity) for the p-fold fibre product. There are maps πi : Y p → Y p−1 for
i = 1, ..., p. In the case YU , note that these spaces are disjoint unions of all
ordered double intersections, triple intersections, etc. For example, for two
sets, Y 2 is a disjoint union of 4 double intersections. Thus restricting some
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form G to each Ua becomes simply π∗G, and so on.

A basic property of surjective submersions is that they admit local sections.
What this means is that we can always find an open cover U = {Ua} and local
sections sa : Ua → Y of the submersion π. These can be bundled into a map
s : YU → Y , and this type of thing will always allow you to get back to the
local description of the Hitchin-Chatterjee theory. Surjective submersions to
M form a category, with morphisms being what you think they are. One nice
feature is that “refinements of open covers” are special cases of morphisms
in this category.

Define

δ : Ω(Y p)→ Ω(Y p+1), δ =

p∑
i=1

(−1)i−1π∗i .

Note that in the case YU this is the Cech differential on sheaves of forms.
Also

0→ Ω(M)→ Ω(Y )→ Ω(Y 2)→ · · ·

is the Cech resolution of the sheaf. It is acyclic by partitions of unity. And
this holds for general Y in fact!

More generally for a function g : Y p−1 → H where H is an abelian group,
δg makes sense. And for a bundle P → Y p−1 we define a bundle δ(P )→ Y p

as the alternating tensor product of pullbacks. It is immediate that δδP is
canonically trivial.

5.2 Definition of bundle gerbes

We simply replace YU with a more general surjective submersion!

Definition 5.1. A bundle gerbe over M is a pair (L, Y ) where Y →M is a
surjective submersion and L→ Y 2 is a hermitian line bundle, satisfying:

1. There is a chosen unitary trivializing section θ of δ(L)→ Y 3.

2. δ(θ) = 1.

Taking Y = YU gives back Hitchin-Chatterjee. This can be packaged slightly
differently: let Q → Y 2 be the associated unit circle bundle. Then (1) is
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equivalent to the existence of an isomorphism

m : π∗3(Q)⊗ π∗1(Q)→ π∗2(Q).

This map is called the bundle gerbe multiplication. The reason for this, and
the reason why this is nice, is that (2) then says that m is associative. Explic-
ity, we take θ∗, a unitary section of δ(Q)∗; by duality, it pairs naturally with
a section of π∗3(Q)⊗π∗1(Q), with output in π∗2(Q). This is essentially the way
we’ve been thinking about “products” in hLAB recently, as homomorphisms
in Hom(A⊗2, A). Viewed in these terms, I believe that δθ is the associator.

(Note from Stevenson, 2000.) Over a point (y1, y2, y3) the section θ is defined
by taking elements u ∈ P(y1,y2) and v ∈ P(y2,y3) and setting

θ(y1,y2,y3) = u⊗m(u⊗ v)∗ ⊗ v ∈ P(y1,y2) ⊗ P ∗(y1,y3)P(y2,y3).

From this we see that θ∗ indeed implements the bundle gerbe multiplica-
tion. To see that δθ being the associator is plausible, note that over a
point (y1, y2, y3, y4), δθ lives in the product of 12 copies P(y,z) where y, z
run through all possible ordered pairs. Using P(y,z) = P ∗(z,y), these cancel in
pairs and give the trivial bundle. Also, we can view δθ as performing the
product ((ab)c)((c−1b−1)a−1). This matches numerically: 4 dual bundles are
used to eat the elements used in the first two products ab and c−1b−1, with
the results stored in 2 bundles (6 so far). Then to form the next products
(with c and with a−1 respectively), another 4 dual bundles are used to eat
the elements, and then the results stored in the remaining 2 bundles (no up
to 12 bundles used). The remaining two bundles where the results are stored
are dual to each other (as follows because we used all inverses for one triple
product), and they can be paired to give an element of U(1). This element is
the associator; the phase relating the two ways of doing the product. Saying
that it is 1, says that the product is associative.

5.3 Sheaf of groupoids

For each point m ∈ M , we get a groupoid as follows. The objects are
elements of the fibre Ym, and the morphisms between y1, y2 ∈ Ym are P(y1,y2).
The bundle gerbe multiplication gives composition. Note that this groupoid
is transitive, and that the group of morphisms of a point is U(1). So we get
a bundle of U(1)-groupoids over M .
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5.4 Reformulation of functorial properties

1. Pullbacks: f : N → M . Take f ∗Y , then there is a map f : f ∗Y → Y
covering f , and so a map f 2 : (f ∗Y )2 → Y 2 which we use to pullback
P .

2. Dual: just take P ∗.

3. Products: given (P, Y ), (Q,X) take the fibre product of Y,X, and the
tensor product P ⊗Q.

4. Characteristic class. Choose a good cover U , sufficiently small that we
have sections sa : Ua → Y . Then we get sections sab = (sa, sb) : Uab →
Y 2. Let τab : Uab → Pab = s∗abP be a section (exists as the cover is
good). Likewise put θabc = s∗abcθ. On triple overlaps we have

τabτbcτca = gabcθabc,

for some gabc : Uabc → U(1). This is the characteristic class. (Note: the
left-hand-side here really means (π∗cτab)⊗ (π∗aτbc) · · · .)

5. Connections: simply a hermitian connection ∇ on L → Y 2, such that
θ is flat for δ(∇) (where here δ(∇) denotes the connection on δ(L) ob-
tained by pullbacks and by the usual prescription for tensor products
of bundles). Equivalently, m,∇ satisfy a Leibniz rule. This immedi-
ately gives back Hitchin-Chatterjee for Y = YU . As before there is a
(non-unique) form F on Y such that δ(F ) is the curvature of ∇ (this
is the “curving” or “B-field”), and dF is basic, and so dF = π∗G for
some 3-form G on the base, the 3-curvature. Similar to above, we can
use local sections sa for a good cover, to obtain equations as before.

Definition 5.2. A bundle gerbe is trivial if there is a hermitian line bundle
R → Y such that (L, Y ) ' (δ(R), Y ). The choice of R and of the isomor-
phism is called a trivialization. Note here that δδ(R) is canonically trivial,
so we are taking θ = 1 for the bundle gerbe δ(R). Say that two bundle
gerbes are stably isomorphic if G∗1 ⊗G2 is trivial. Then turns out that stable
isomorphism classes are exactly classified by the characteristic class.
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5.5 Lifting bundle gerbes

One nice feature of bundle gerbes is that they give a nice construction of the
lifting gerbe considered before. We consider a central extension, as before,
and a principal G-bundle Y → M—this will be our surjective submersion!
(Notice the way it is global now: we are far from a good cover!) There is a
natural map f : Y 2 → G defined by y2 = y1f(y1, y2). The central extension
G̃ is, in particular, a principle U(1)-bundle over G. We simply pull it back
using the map f to get the U(1) bundle P → Y 2. (If you want a line bundle,
then take the associated line bundle.) Given g ∈ G, let G̃g denote the fibre
of G̃ over g. Then the group multiplication on G respects the fibres in the
natural way (this is just because G̃ → G is a group homomorphism). Now
let (y1, y2, y3) be in Y 3. We seek a bundle gerbe multiplication, that is, a
map

m : Y(y1,y2) ⊗ Y(y2,y3) → Y(y1,y3)

satisfying associativity. But, if we think about how pullback bundles are
defined, Y(y,z) = G̃f(y,z) (i.e. the fibre over (y, z) is the fibre of G̃ over the
image point). So the multiplication above is already defined by the group
multiplication on G̃, and associativity follows from associativity of multipli-
cation on G̃!

We now give some examples of this beautiful construction. In addition to
spin-c structures that we mentioned before, we also have:

1. PU(H) bundles. Let H be a Hilbert space, and Y → M a principal
PU(H) bundle. Then we have a central extension U(H)→ PU(H) and
so we get a gerbe. The characteristic class is called the Dixmier-Douady
class. This was, I believe, the earliest (?) “geometric realization” of
degree-3 integral cohomology.

2. The basic gerbe over a compact, connected, simple Lie group G. Under
these assumptions it is known that H3(G,Z) = Z. (In de Rham, this is
generated by the Cartan 3-form.) We want to get the gerbe representing
the generator. Let PG denote the space of based paths, and PG→ G
the path fibration (given by the evaluation-at-1 map). The kernel of
the evaluation map is ΩG, so PG→ G is a principal ΩG bundle (check:
the endpoint of the path doesn’t change because loop in ΩG ends at
the identity). There is a basic central extension,

1→ U(1)→ Ω̃G→ ΩG→ 1.
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The lifting bundle gerbe for this is what we seek!

5.6 One application: WZW term

Let Σ be a compact Riemann surface. There is a theory whose configuration
space consists of maps g : Σ → G with G a compact simple Lie group. The
action has a kinetic term and a more interesting term which was defined by
Witten as follows: choose a 3-manifold X with ∂X = σ and assume we can
extend g to X. Then the interesting interaction term is∫

X

g∗η.

This is dependent on the choice of extension. However, choosing different
extensions changes the result by an integer (using integrality of η). So in
the quantum theory (after we take e2πiS) it disappears. Using gerbes we can
instead think of this as the holonomy of the basic gerbe around the surface
Σ! This eliminates X from the discussion (and we no longer have to make
the additional assumption on g).
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